

IDENTIFICACIÓN DE LA UNIDAD DE APRENDIZAJE

Unidad académica:												
Centro de Investigación en Ingeniería y Ciencias Aplicadas												
Plan de estudios: Bioingeniería Aplicada												
Unidad de aprendizaje: Ciclo de formación: Especializado												
Diseño de BioM		Eje gen	eral de	e formación: T	eórico-Téci	nico						
				Área d	Área de Conocimiento : Biodiseño en Ingeniería							
				Semestre: Séptimo								
Elaborada por: Dr. Ramón Cabello				Fecha de elaboración: agosto de 2023								
Ruiz, Dra. Marga			-									
Lic. Sahiril Ferna	nua Koc	iriguez F	uentes									
Clave:	Horas teóricas:	Horas prácticas:	Horas totales:	Horas independientes:	Créditos:	Tipo:	Carácter:	Modalidad:				
DIB46CE0202 06	02	02	04	02 06 Obligatoria Teórico- Práctica Escolarizada								
Plan (es) de estudio en el(los) que se imparte: Bioingeniería Aplicada												

ESTRUCTURA DE LA UNIDAD DE APRENDIZAJE

Presentación: Los Sistemas Microelectromecánicos (MEMS) nacen a partir de los circuitos integrados (CI) y se fabrican con métodos inspirados en las micro y nano tecnologías. Los sistemas nanoelectromecánicos, o NEMS, son MEMS escalados a dimensiones submicrométricas. Los MEMS/NEMS tienen un amplio impacto en la sociedad y en la industria, ya que están constituidos por sensores y actuadores que se utilizan ampliamente en la vida diaria. Una de las áreas de los MEMS está constituida por los BioMEMS, los cuales se aplican a los sistemas biológicos en general, y a la salud humana en particular. Los BioMEMS utilizan microsensores, transduct pres, actua dores y componentes electrónicos. Algunos BioMEMS incorporan moléculas como una parte integral del dispositivo.

BioMEMS ofrece las siguientes ventajas: portabilidad, escalabilidad, fiabilidad, reducido volumen de muestra/reactivo, bajo consumo de energía, alto rendimiento, integrabilidad fabricación por lotes, bajo coste, alta sensibilidad, tiempo de ensayo reducido, etc. Debido a la importancia de los BioMEMS en el desarrollo científico y tecnología actual, esta Unidad de Aprendizaje busca que el estudiantado desarrolle conocimientos básicos sobre su diseño y conozca sus aplicaciones representativas.

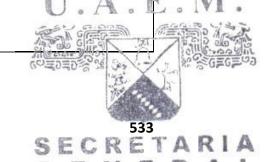
Propósito: Conozca los principios básicos del diseño de MEMS/NEMS representativos, y de BioMEMS representativos, así como de las consideraciones éticas involucrados, al concluir esta unidad de aprendizaje, a partir de análisis de los conceptos fundamentales de diseño, simulación y fabricación para conocer su desempeño con dedicación y responsabilidad.

Competencias que contribuyen al perfil de egreso

Competencias Básicas (CB) (Marque X)

⊠ CB2. Comunicación oral y escrita

☑ CB5. Razonamiento científico


Competencias Genéricas (CG) (Marque X)

Digitales genéricas						
☐ CG12. Creación de contenidos digitales						
☐ CG14. Resolución de problemas técnicos						
Socioculturales genéricas						
☐ CG18. Responsabilidad social y ciudadana						
☑ CG20. Emprendimiento						

Competencias laborales (CL) (Marque X)

Transferibles para el trabajo

□ CL1. Digitales para el trabajo

Específicas disciplinares (CE)

- CE3. Analiza y desarrolla modelos analíticos y/o numéricos de la Bioingeniería Aplicada, mediante la aplicación de sus competencias para contribuir a la puesta en marcha de soluciones, con menores riesgos técnicos y económicos, así como para desarrollar conocimiento.
- CE4. Utiliza métodos de implementación o manufactura, mediante el uso de procesos o modelos previamente desarrollados, para la obtención de productos o bien, para la fabricación de dispositivos o sistemas.

CONTENIDOS

Bloques:	Temas:
Bloque 1. Introducción a BioMEMS y NEMS Propósito: Conozca los conceptos básicos y diferencias entre BioMEMS y NEMS mediante la teoría para desarrollar conocimiento sobre las bases de esta área, con responsabilidad y compromiso.	 1.1 Definición y diferencias entre BioMEMS y NEMS. 1.2 Aplicaciones y relevancia en biotecnología y medicina. 1.3 Tecnologías de fabricación
Bloque 2. Modelado y Simulación en Diseño de NEMS y BioMEMS Propósito: Diseñe y simule estructuras MEMS Y NEMS básicas, a través del uso de software para su posterior aplicación o uso en estructuras más complejas con resiliencia y perseverancia.	 2.1 Diseño Asistido por Computadora (CAD) en NEMS y BioMEMS 2.1.1 Herramientas de simulación y modelado 2.1.2 Simulación estructural, térmica, electrotérmica 2.2 Casos de estudio de diseño y simulación de una estructura BioMEMS y una BioNEMS 2.2.1 Uso de herramientas CAD en el diseño de Biodispositivos 2.2.2 Integración con simulaciones y análisis 2.2.3 Diseño y optimización de proto pos virtuales

Bloque 3. Sensores y Actuadores BioMEMS y BioNEMS	3.1 Principios de sensores y actuadores.
Propósito: Reproduzca diseños básicos de sensores y actuadores a través de la investigación y la simulación mediante el uso de software para su futura aplicación en áreas estratégicas con dedicación y compromiso.	 3.2 Tipos de sensores utilizados en aplicaciones biomédicas. 3.3 Diseño y características de actuadores. 3.4 Aplicaciones en Biología, deportes y medio ambiente 3.5 Ejemplos de dispositivos implantables para
	aplicaciones en salud.
Bloque 4. Ética y Perspectivas Futuras	4.1 Consideraciones éticas en el diseño de
Propósito: Comprende las implicaciones del diseño de BioMEMS y BioNEMS a través de	dispositivos BioMEMS y BioNEMS.
ejemplos para generar conciencia sobre su impacto con un enfoque sostenible y ético.	4.2 Tendencias futuras en el campo de BioMEMS y NEMS.
	4.3 Impacto social y regulatorio.

ESTRATEGIAS DE ENSEÑANZA – APRENDIZAJE

Estrategias de aprendizaje sugeridas (Marque X)									
Aprendizaje basado en problemas		Nemotecnia							
Estudios de caso	\boxtimes	Análisis de textos	\boxtimes						
Trabajo colaborativo		Seminarios							
Plenaria		Debate							
Ensayo		Taller							
Mapas conceptuales		Ponencia científica							
Diseño de proyectos		Elaboración de síntesis							
Mapa mental	\boxtimes	Monografía							
Práctica reflexiva		Reporte de lectura	A^{\boxtimes}						
Trípticos		Exposición oral							
Otros:	•	111800-10	25						

Estrategias de ense	eñanza	sugeridas (Marque X)	
Presentación oral (conferencia o exposición) por parte del docente	\boxtimes	Experimentación (prácticas)	
Debate o Panel	\boxtimes	Trabajos de investigación documental	\boxtimes
Lectura comentada		Anteproyectos de investigación	\boxtimes
Seminario de investigación		Discusión guiada	
Estudio de Casos		Organizadores gráficos (Diagramas, etc.)	
Foro		Actividad focal	
Demostraciones		Analogías	
Ejercicios prácticos (series de problemas)	\boxtimes	Método de proyectos	
Interacción con la realidad (a través de videos, fotografías, dibujos y software especialmente diseñado).		Actividades generadoras de información previa	
Organizadores previos		Exploración de la web	\boxtimes
Archivo		Portafolio de evidencias	
Ambiente virtual (foros, chat, correos, ligas a otros sitios web, otros)		Enunciado de objetivo o intenciones	
Otra, especifique (lluvia de ideas, mesa redor experiencia estructurada, diario reflexivo, en			roles,

CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje						
Participaciones en clase	20%						
Trabajos de investigación	15%						
Tareas	15% U . A . I						
Exámenes	20%						

Debate	10%
Reportes de simulación	20%
Total	100 %

PERFIL DEL PROFESORADO

Ingeniería o Posgrado con perfil en diseño de dispositivos electrónicos, con experiencia en el área de MEMS y/o NEMS.

REFERENCIAS

Básicas:

- 39. Cros F. BioMEMS. En Biomedical Materials (pp. 581–620). Springer International Publishing. https://doi.org/10.1007/978-3-030-49206-9_18; 2020.
- 40. Hosseini S, Espinosa-Hernandez MA, Garcia-Ramirez R, Cerda-Kipper AS, Reveles-Huizar S, Acosta-Soto L. BioMEMS [Internet]. Singapore: Springer Singapore; 2021.
- 41. Tecpoyotl Torres M, Vargas Chablé P, Varona Salazar J, Mireles Jr. García J, Vargas Bernal R, García Ramírez PJ, et al. Introducción al análisis y diseño de MEMS. Tecpoyotl Torres M, editor. México: Ediciones Comunicación Científica; https://doi.org/10.52501/cc.104; 2023.

Complementarias:

- 1. Kubby JA. Review of "Introduction to BioMEMS" by Albert Folch. Biomed Eng OnLine. Hsu T-R. MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering. 2a ed. Chichester, Inglaterra: John Wiley & Sons; 2008.
- 2. Senturia SD. <u>Diseño de microsistemas</u>. 1a ed. Dordrecht, Países Bajos: Springer; 2000.

INSTRUMENTOS

Tarea escrita

Criterio	Valoración
Contenido	
Presentación	U _{10%} A . 1
Estructura	

Desarrollo	30%
Conclusiones	10%
Referencias (presentación y balance)	10%
Redacción	
Ortografía correcta	10%
Redacción adecuada	10%
Total	100 %

Exposición

Criterio	Valoración
Contenido	
Estructura adecuada	10%
Tema correctamente sustentado	20%
Distribución de contenido (imagen y texto) de diapositivas adecuada y atractiva	10%
Presentación	
Dominio del tema (usar a las diapositivas como apoyo, no como reproducción textual)	20%
Exposición adecuada (gesticulación corporal y características vocales)	10%
Administración de tiempo	10%
Aspectos léxicos y gramaticales	
Terminología y explicación congruente con el nivel y área de conocimiento	10%
Ortografía	10%
Total	100 %

CRONOGRAMA

Blooms	Semanas															
Bloque	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
Bloque 1. Introducción a BioMEMS y NEMS	×	×		×												
Bloque 2. Modelado y Simulación en Diseño de NEMS y BioMEMS					×		×									
Bloque 3. Sensores y Actuadores BioMEMS y BioNEMS									×	×	×	×				
Bloque 4. Ética y Perspectivas Futuras														×		×

